- ifib-research
- Themenfelder
- Data Science, Maschinelles Lernen und Künstliche Intelligenz
Data Science, Maschinelles Lernen und Künstliche Intelligenz
Data Science beschreibt die Anwendung statistischer Verfahren der Künstlichen Intelligenz (KI) und des Maschinellen Lernens (ML). Diese Techniken haben wichtige Fortschritte in Bereichen wie der maschinellen Übersetzung, der automatisierten Erkennung von Texten und Objekten in Bildern sowie der Empfehlung von Nachrichten und Videos ermöglicht. Gleichzeitig sind dadurch neue Risiken der Beeinflussung und Diskriminierung von Nutzenden entstanden.
Erforschen sozio-technischer Systeme
Das ifib kombiniert ein tiefgreifendes Verständnis für Data-Science-Techniken mit einer umfassenden Sensibilität für sozialverantwortliche Technikgestaltung. Neben der Entwicklung neuer Algorithmen und neuer ML-basierter Systeme liegt deshalb ein Hauptaugenmerk auf der kritischen Erforschung der Wechselwirkungen von KI und ML mit gesellschaftlichen Entwicklungen.
Analysieren großer Datenmengen
Unsere Forschung beinhaltet unter anderem die automatische Analyse von Bildschirmvideos, die Untersuchung von Lernwegen („Learning Analytics“) und die automatisierte Erkennung von Argumenten in Texten. Dabei analysieren wir, wie Data Science-Methoden das Forschungsdatenmanagement in Verbundprojekten unterstützen können.
Gestalten von Nutzungserlebnissen in KI-Systemen
Ein weiterer Schwerpunkt unserer Arbeit ist, wie ML-basierte Systeme bestmöglich erklärt und visualisiert werden können. Neben der kritischen Reflektion der Chancen und Risiken untersucht das ifib, worauf es beim Nutzungserlebnis dieser Systeme ankommt. Der Fokus liegt darauf, wie Empfehlungssysteme für Nachrichten und Videos verbessert und Anwendende darin unterstützt werden können, Falschinformation wie Fake News zu erkennen.
Aktuelle Projekte
Aktuelle Publikationen
Breiter, Andreas (2024): The adoption of generative AI by students in Germany and its organizational embedding.
Toronto:
Konferenz: SERU Symposium: Leveraging Data for Student Engagement and Wellbeing in Undergraduate and Graduate Education
Breiter, Andreas (2024): Challenges of Communicative AI in Education.
Kopenhagen, Aarhus University:
Konferenz: Danish School of Education (DPU), Campus Copenhagen
Molina León, Gabriela; Isenberg, Petra; Breiter, Andreas (2023): Eliciting Multimodal and Collaborative Interactions for Data Exploration on Large Vertical Displays. In Transactions on Visualization and Computer Graphics
Breiter, Andreas (2023): Artificial Intelligence and the Future of Student Experience.
Berkeley, CA:
Konferenz: Keynote Panel. The 2023 SERU Symposium of the Center for Studies in Higher Education at UC Berkeley, 14.-15.6.2023
Breiter, Andreas (2023): Communicative AI in Education – from bias to trust.
University of Twente:
Konferenz: AI and Data use in Education (AID-E) network